The Tasmanian devil ( Sarcophilus harrisii; palawa kani: purinina) is a carnivorous marsupial of the family Dasyuridae. It was formerly present across mainland Australia, but became extinct there around 3,500 years ago; it is now confined to the island of Tasmania. The size of a small dog, the Tasmanian devil became the largest carnivorous marsupial in the world following the extinction of the thylacine in 1936. It is related to quolls, and distantly related to the thylacine. It is characterised by its stocky and muscular build, black fur, pungent odour, extremely loud and disturbing screech, keen sense of smell, and ferocity when feeding. The Tasmanian devil's large head and neck allow it to generate among the strongest bites per unit body mass of any extant predatory land mammal. It hunts prey and scavenges on carrion.
Although devils are usually solitary, they sometimes eat and defecate together in a communal location. Unlike most other Dasyuridae, the devil thermoregulation effectively, and is active during the middle of the day without overheating. Despite its rotund appearance, it is capable of surprising speed and endurance, and can climb trees and swim across rivers. Devils are not monogamous. Males fight one another for females, and guard their partners to prevent female infidelity. Females can ovulate three times in as many weeks during the seasonal breeder, and 80% of two-year-old females are seen to be pregnant during the annual mating season.
Females average four breeding seasons in their life, and give birth to 20 to 30 live young after three weeks' gestation. The newborn are pink, lack fur, have indistinct facial features, and weigh around at birth. As there are only four nipples in the pouch, competition is fierce, and few newborns survive. The young grow rapidly, and are ejected from the pouch after around 100 days, weighing roughly . The young become independent after around nine months.
In 1941, devils became officially protected. Since the late 1990s, the devil facial tumour disease (DFTD) has drastically reduced the population and now threatens the survival of the species, which in 2008 was declared to be endangered. Starting in 2013, Tasmanian devils are again being sent to zoos around the world as part of the Australian government's Save the Tasmanian Devil Program. The devil is an iconic symbol of Tasmania and many organisations, groups and products associated with the state use the animal in their logos. It is seen as an important attractor of tourists to Tasmania and has come to worldwide attention through the Looney Tunes character of the same name.
A later revision of the devil's taxonomy, published in 1987, attempted to change the species name to Sarcophilus laniarius based on mainland fossil records of only a few animals. However, this was not accepted by the taxonomic community at large; the name S. harrisii has been retained and S. laniarius relegated to a fossil species. "Beelzebub's pup" was an early vernacular name given to it by the explorers of Tasmania, in reference to a religious figure who is a prince of hell and an assistant of Satan;Owen and Pemberton, p. 8. the explorers first encountered the animal by hearing its far-reaching vocalisations at night.Owen and Pemberton, p. 7. Related names that were used in the 19th century were Sarcophilus satanicus ("Satanic flesh-lover") and Diabolus ursinus ("bear devil"), all due to early misconceptions of the species as implacably vicious. The Tasmanian devil ( Sarcophilus harrisii) belongs to the family Dasyuridae. The genus Sarcophilus contains two other species, known only from Pleistocene fossils: S. laniarius and S. moomaensis. Phylogenetics analysis shows that the Tasmanian devil is most closely related to .
According to Pemberton, the possible ancestors of the devil may have needed to climb trees to acquire food, leading to a growth in size and the hopping gait of many marsupials. He speculated that these adaptations may have caused the contemporary devil's peculiar gait.Owen and Pemberton, p. 34. The specific lineage of the Tasmanian devil is theorised to have emerged during the Miocene, molecular evidence suggesting a split from the ancestors of quolls between 10 and 15 million years ago,
One strand conformation polymorphism analysis (OSCP) on the major histocompatibility complex (MHC) class I domain taken from various locations across Tasmania showed 25 different types, and showed a different pattern of MHC types in north-western Tasmania to eastern Tasmania. Those devils in the east of the state have less MHC diversity; 30% are of the same type as the tumour (type 1), and 24% are of type A. Seven of every ten devils in the east are of type A, D, G or 1, which are linked to DFTD; whereas only 55% of the western devils fall into these MHC categories. Of the 25 MHC types, 40% are exclusive to the western devils. Although the north-west population is less genetically diverse overall, it has higher MHC gene diversity, which allows them to mount an immune response to DFTD. According to this research, mixing the devils may increase the chance of disease. Of the fifteen different regions in Tasmania surveyed in this research, six were in the eastern half of the island. In the eastern half, Epping Forest had only two different types, 75% being type O. In the Buckland-Nugent area, only three types were present, and there were an average of 5.33 different types per location. In contrast, in the west, Cape Sorell yielded three types, and Togari North-Christmas Hills yielded six, but the other seven sites all had at least eight MHC types, and West Pencil Pine had 15 types. There was an average of 10.11 MHC types per site in the west. Recent research has suggested that the wild population of devils are rapidly evolving a resistance to DFTD.
Devils are fully grown at two years of age, and few devils live longer than five years in the wild. Possibly the longest-lived Tasmanian devil recorded was Coolah, a male devil which lived in captivity for more than seven years.Owen and Pemberton, p. 140. Born in January 1997 at the Cincinnati Zoo, Coolah died in May 2004 at the Fort Wayne Children's Zoo. The devil stores body fat in its tail, and healthy devils have fat tails. The tail is largely non-prehensile and is important to its physiology, social behaviour and locomotion. It acts as a counterbalance to aid stability when the devil is moving quickly.Owen and Pemberton, p. 46. An ano-genital scent gland at the base of its tail is used to mark the ground behind the animal with its strong, pungent scent. The male has external testes in a pouch-like structure formed by lateral ventrocrural folds of the abdomen, which partially hides and protects them. The testes are subovoid in shape and the mean dimensions of 30 testes of adult males was .Guiler (1970), p. 64. The female's pouch opens backwards, and is present throughout its life, unlike some other dasyurids.
The Tasmanian devil has the most powerful bite relative to body size of any living mammalian carnivore, with a Bite Force Quotient of 181 and exerting a canine bite force of . The jaw can open to 75–80 degrees, allowing the devil to generate the large amount of power to tear meat and crush bones—sufficient force to allow it to bite through thick metal wire.Owen and Pemberton, p. 20. The power of the is in part due to its comparatively large head. The teeth and jaws of Tasmanian devils resemble those of , an example of convergent evolution. Dasyurid teeth resemble those of primitive marsupials. Like all dasyurids, the devil has prominent canines and cheek teeth. It has three pairs of lower incisors and four pairs of upper incisors. These are located at the top of the front of the devil's mouth.Tyndale-Biscoe, pp. 142–143. Like dogs, it has 42 teeth, however, unlike dogs, its teeth are not replaced after birth but grow continuously throughout life at a slow rate.Owen and Pemberton, p. 64. It has a "highly carnivorous dentition and adaptations for bone consumption". The devil has long claws that allow it to dig burrows and seek subterranean food easily and grip prey or mates strongly. The teeth and claw strength allow the devil to attack wombats up to in weight.Owen and Pemberton, p. 44. The large neck and forebody that give the devil its strength also cause this strength to be biased towards the front half of the body; the lopsided, awkward, shuffling gait of the devil is attributed to this.Owen and Pemberton, p. 53.
The devil has long Vibrissae on its face and in clumps on the top of the head. These help the devil locate prey when foraging in the dark, and aid in detecting when other devils are close during feeding. The whiskers can extend from the tip of the chin to the rear of the jaw and can cover the span of its shoulder. Hearing is its dominant sense, and it also has an excellent sense of smell, which has a range of . The devil, unlike other marsupials, has a "well-defined, saddle-shaped ectotympanic". Since devils hunt at night, their vision seems to be strongest in monochromacy. In these conditions they can detect moving objects readily, but have difficulty seeing stationary objects.
Devils are found in all habitats on the island of Tasmania, including the outskirts of urban areas, and are distributed throughout the Tasmanian mainland and on Robbins Island (which is connected to mainland Tasmania at low tide). The north-western population is located west of the Forth River and as far south as Macquarie Heads. Previously, they were present on Bruny Island from the 19th century, but there have been no records of them after 1900. They were illegally introduced to Badger Island in the mid-1990s but were removed by the Tasmanian government by 2007. Although the Badger Island population was free from DFTD, the removed individuals were returned to the Tasmanian mainland, some to infected areas. A study has modelled the reintroduction of DFTD-free Tasmanian devils to the Australian mainland in areas where are sparse. It is proposed that devils would have fewer impacts on both livestock and native fauna than dingoes, and that the mainland population could act as an additional insurance population. In September 2015, 20 immunised captive-bred devils were released into Narawntapu National Park, Tasmania. Two later died from being hit by cars.
The "core habitat" of the devils is considered to be within the "low to moderate annual rainfall zone of eastern and north-western Tasmania". Tasmanian devils particularly like dry sclerophyll forests and coastal woodlands. Although they are not found at the highest altitudes of Tasmania, and their population density is low in the button grass plains in the south-west of the state, their population is high in dry or mixed sclerophyll forests and coastal heaths. Devils prefer open forest to tall forest, and dry rather than wet forests. They are also found near roads where roadkill is prevalent, although the devils themselves are often killed by vehicles while retrieving the carrion. According to the Threatened Species Scientific Committee, their versatility means that habitat modification from destruction is not seen as a major threat to the species.
The devil is directly linked to the Dasyurotaenia robusta, a tapeworm which is classified as Rare under the Tasmanian Threatened Species Protection Act 1995. This tapeworm is found only in devils.
In late 2020, Tasmanian devils were reintroduced to mainland Australia in a sanctuary run by Aussie Ark in the Barrington Tops area of New South Wales. This was the first time devils had lived on the Australian mainland in over 3,000 years. 26 adult devils were released into the protected area, and by late April 2021, seven joeys had been born, with up to 20 expected by the end of the year.
Young devils can climb trees, but this becomes more difficult as they grow larger. Devils can scale trees of trunk diameter larger than , which tend to have no small side branches to hang onto, up to a height of around . Devils that are yet to reach maturity can climb shrubs to a height of , and can climb a tree to if it is not vertical. Adult devils may eat young devils if they are very hungry, so this climbing behaviour may be an adaptation to allow young devils to escape. Devils can also swim and have been observed crossing rivers that are in width, including icy cold waterways, apparently enthusiastically.Owen and Pemberton, pp. 21–22.
Tasmanian devils do not form packs, but rather spend most of their time alone once weaned. Classically considered as solitary animals, their social interactions were poorly understood. However, a field study published in 2009 shed some light on this. Tasmanian devils in Narawntapu National Park were fitted with proximity sensing Tracking collar which recorded their interactions with other devils over several months from February to June 2006. This revealed that all devils were part of a single huge contact network, characterised by male-female interactions during mating season, while female–female interactions were the most common at other times, although frequency and patterns of contact did not vary markedly between seasons. Previously thought to fight over food, males only rarely interacted with other males. Hence, all devils in a region are part of a single social network. They are considered to be non-territorial in general, but females are territorial around their dens. This allows a higher total mass of devils to occupy a given area than territorial animals, without conflict. Tasmanian devils instead occupy a home range. In a period of between two and four weeks, devils' home ranges are estimated to vary between , with an average of . The location and geometry of these areas depend on the distribution of food, particularly Wallaby and nearby.
Devils use three or four dens regularly. Dens formerly owned by wombats are especially prized as maternity dens because of their security. Dense vegetation near creeks, thick grass tussocks, and caves are also used as dens. Adult devils use the same dens for life. It is believed that, as a secure den is highly prized, some may have been used for several centuries by generations of animals. Studies have suggested that food security is less important than den security, as habitat destruction that affects the latter has had more effect on mortality rates. Young pups remain in one den with their mother, and other devils are mobile,Owen and Pemberton, pp. 76–77. changing dens every 1–3 days and travelling a mean distance of every night. However, there are also reports that an upper bound can be per night. They choose to travel through lowlands, saddles and along the banks of creeks, particularly preferring carved-out tracks and livestock paths and eschewing steep slopes and rocky terrain. The amount of movement is believed to be similar throughout the year, except for mothers who have given birth recently. The similarity in travel distances for males and females is unusual for sexually dimorphic, solitary carnivores. As a male needs more food, he will spend more time eating than travelling. Devils typically make circuits of their home range during their hunts. In areas near human habitation, they are known to steal clothes, blankets and pillows and take them for use in dens in wooden buildings.Owen and Pemberton, pp. 23–24.
While the Dasyuridae have similar diet and anatomy, differing body sizes affect thermoregulation and thus behaviour.Tyndale-Biscoe, p. 148. In ambient temperatures between , the devil was able to maintain a body temperature between . When the temperature was raised to , and the humidity to 50%, the devil's body temperature spiked upwards by within 60 minutes, but then steadily decreased back to the starting temperature after a further two hours, and remained there for two more hours. During this time, the devil drank water and showed no visible signs of discomfort, leading scientists to believe that sweating and evaporative cooling is its primary means of heat dissipation.Tyndale-Biscoe, pp. 147–149. A later study found that devils pant but do not sweat to release heat. In contrast, many other marsupials were unable to keep their body temperatures down.Tyndale-Biscoe, p. 149. As the smaller animals have to live in hotter and more arid conditions to which they are less well-adapted, they take up a nocturnal lifestyle and drop their body temperatures during the day, whereas the devil is active in the day and its body temperature varies by from its minimum at night to the maximum in the middle of the day.Tyndale-Biscoe, pp. 148–149.
The standard metabolic rate of a Tasmanian devil is 141 kJ/kg (15.3 Calorie/lb) per day, many times lower than smaller marsupials. A devil uses per day. The field metabolic rate is 407 kJ/kg (44.1 kcal/lb). Along with quolls, Tasmanian devils have a metabolic rate comparable to non-carnivorous marsupials of a similar size. This differs from placental carnivores, which have comparatively high basal metabolic rates. A study of devils showed a loss of weight from from summer to winter, but in the same time, daily energy consumption increased from . This is equivalent to an increase in food consumption from .Tyndale-Biscoe, p. 150. The diet is protein-based with 70% water content. For every of insects consumed, of energy are produced, while a corresponding amount of wallaby meat generated . In terms of its body mass, the devil eats only a quarter of the eastern quoll's intake, allowing it to survive longer during food shortages.
Despite their lack of extreme speed, there have been reports that devils can run at for , and it has been conjectured that, before European immigration and the introduction of livestock, vehicles and roadkill, they would have had to chase other native animals at a reasonable pace to find food. Pemberton has reported that they can average for "extended periods" on several nights per week, and that they run for long distances before sitting still for up to half an hour, something that has been interpreted as evidence of ambush predation.
Devils can dig to forage , in one case digging down to eat the corpse of a buried horse that had died due to illness. They are known to eat animal cadavers by first ripping out the digestive system, which is the softest part of the anatomy, and they often reside in the resulting cavity while they are eating.
On average, devils eat about 15% of their body weight each day, although they can eat up to 40% of their body weight in 30 minutes if the opportunity arises. This means they can become very heavy and lethargic after a large meal; in this state they tend to waddle away slowly and lie down, becoming easy to approach. This has led to a belief that such eating habits became possible due to the lack of a predator to attack such bloated individuals.
Tasmanian devils can eliminate all traces of a carcass of a smaller animal, devouring the bones and fur if desired.Owen and Pemberton, pp. 11–15, 20, 36. In this respect, devils have earned the gratitude of Tasmanian farmers, as the speed at which they clean a carcass helps prevent the spread of insects that might otherwise harm livestock.Owen and Pemberton, p. 14. Some of these dead animals are disposed of when the devils haul off the excess feed back to their residence to continue eating at a later time.
The diet of a devil can vary substantially for males and females, and seasonally, according to studies at Cradle Mountain. In winter, males prefer medium mammals over larger ones, with a ratio of 4:5, but in summer, they prefer larger prey in a 7:2 ratio. These two categories accounted for more than 95% of the diet. Females are less inclined to target large prey, but have the same seasonal bias. In winter, large and medium mammals account for 25% and 58% each, with 7% small mammals and 10% birds. In summer, the first two categories account for 61% and 37% respectively.
Juvenile devils are sometimes known to climb trees;Owen and Pemberton, pp. 49–50. in addition to small vertebrates and invertebrates, juveniles climb trees to eat grubs and birds' eggs. Juveniles have also been observed climbing into nests and capturing birds. Throughout the year, adult devils derive 16.2% of their biomass intake from arboreal species, almost all of which is possum meat, just 1.0% being large birds. From February to July, subadult devils derive 35.8% of their biomass intake from arboreal life, 12.2% being small birds and 23.2% being possums. Female devils in winter source 40.0% of their intake from arboreal species, including 26.7% from possums and 8.9% from various birds. Not all of these animals were caught while they were in trees, but this high figure for females, which is higher than for male spotted-tailed quolls during the same season, is unusual, as the devil has inferior tree climbing skills.
Although they hunt alone, there have been unsubstantiated claims of communal hunting, where one devil drives prey out of its habitat and an accomplice attacks. Eating is a social event for the Tasmanian devil. This combination of a solitary animal that eats communally makes the devil unique among carnivores. Much of the noise attributed to the animal is a result of raucous communal eating, at which up to 12 individuals can gather, although groups of two to five are common;Owen and Pemberton, p. 71. it can often be heard several kilometres away. This has been interpreted as notifications to colleagues to share in the meal, so that food is not wasted by rot and energy is saved. The amount of noise is correlated to the size of the carcass. The devils eat in accordance with a system. Juveniles are active at dusk, so they tend to reach the source before the adults.Owen and Pemberton, pp. 70–73. Typically, the dominant animal eats until it is satiated and leaves, fighting off any challengers in the meantime. Defeated animals run into the bush with their hair and tail erect, their conqueror in pursuit and biting their victim's rear where possible. Disputes are less common as the food source increases as the motive appears to be getting sufficient food rather than oppressing other devils. When are eating a carcass, devils will tend to chase them away. This is a substantial problem for spotted-tailed quolls, as they kill relatively large possums and cannot finish their meal before devils arrive. In contrast, the smaller prey on much smaller victims, and can complete feeding before devils turn up. This is seen as a possible reason for the relatively small population of spotted-tailed quolls.
A study of feeding devils identified twenty physical postures, including their characteristic vicious yawn, and eleven different vocal sounds, including clicks, shrieks and various types of growling, that devils use to communicate as they feed. They usually establish dominance by sound and physical posturing, although fighting does occur. The white patches on the devil are visible to the night-vision of its colleagues. Chemical gestures are also used. Adult males are the most aggressive,Guiler (1992), pp. 8–10. and scarring is common.Owen and Pemberton, pp. 71–73. They can also stand on their hind legs and push each other's shoulders with their front legs and heads, similar to sumo wrestling. Torn flesh around the mouth and teeth, as well as punctures in the rump, can sometimes be observed, although these can also be inflicted during breeding fights.
Digestion is very fast in dasyurids and, for the Tasmanian devil, the few hours taken for food to pass through the small gut is a long period in comparison to some other dasyuridae.Tyndale-Biscoe, p. 147. Devils are known to return to the same places to defecate, and to do so at a communal location, called a devil latrine.Owen and Pemberton, p. 25. It is believed that the communal defecation may be a means of communication that is not well understood. Devil scats are very large compared to body size; they are on average long, but there have been samples that are in length. They are characteristically grey in colour due to digested bones, or have bone fragments included.
Owen and Pemberton believe that the relationship between Tasmanian devils and thylacines was "close and complex", as they competed directly for prey and probably also for shelter. The thylacines preyed on the devils, the devils scavenged from the thylacine's kills, and the devils ate thylacine young. Menna Jones hypothesises that the two species shared the role of apex predator in Tasmania.Owen and Pemberton, pp. 43–47. Wedge-tailed eagles have a similar carrion-based diet to the devils and are regarded as competitors.Owen and Pemberton, pp. 60–62. Quolls and devils are also seen as being in direct competition in Tasmania. Jones believed that the quoll has evolved into its current state in just 100–200 generations of around two years as determined by the equal spacing effect on the devil, the largest species, the spotted-tail quoll, and the smallest species, the eastern quoll.Owen and Pemberton, pp. 56–58. Both the Tasmanian devil and the quolls appears to have evolved up to 50 times faster than the average evolutionary rate amongst mammals.
Occurring in March, mating takes places in sheltered locations during both day and night. Males fight over females in the breeding season, and female devils will mating with the dominant male.Owen and Pemberton, pp. 64–66. Females can ovulate up to three times in a 21-day period, and copulation can take five days; one instance of a couple being in the mating den for eight days has been recorded. Devils are not monogamous, and females will mate with several males if not guarded after mating; males also reproduce with several females during a season. Females have been shown to be selective in an attempt to ensure the best genetic offspring, for example, fighting off the advances of smaller males. Males often keep their mates in custody in the den, or take them along if they need to drink, lest they engage in infidelity.
Males can produce up to 16 offspring over their lifetime, while females average four mating seasons and 12 offspring. Theoretically this means that a devil population can double on an annual basis and make the species insulated against high mortality.Owen and Pemberton, p. 66. The pregnancy rate is high; 80% of two-year-old females were observed with newborns in their pouches during the mating season. More recent studies of breeding place the mating season between February and June, as opposed to between February and March.
Gestation lasts 21 days, and devils give birth to 20–30 young standing up, each weighing approximately . Embryonic diapause does not occur. At birth, the front limb has well-developed digits with claws; unlike many marsupials, the claws of baby devils are not deciduous. As with most other marsupials, the forelimb is longer () than the rear limb (), the eyes are spots, and the body is pink. There are no external ears or openings. Unusually, the sex can be determined at birth, with an external scrotum present.
Tasmanian devil young are variously called "pups", "joeys", or "imps". When the young are born, competition is fierce as they move from the vagina in a sticky flow of mucus to the pouch. Once inside the pouch, they each remain attached to a nipple for the next 100 days. The female Tasmanian devil's pouch, like that of the wombat, opens to the rear, so it is physically difficult for the female to interact with young inside the pouch. Despite the large litter at birth, the female has only four nipples, so there are never more than four babies nursing in the pouch, and the older a female devil gets, the smaller her litters will become. Once the young have made contact with the nipple, it expands, resulting in the oversized nipple being firmly clamped inside the newborn and ensuring that the newborn does not fall out of the pouch. On average, more females survive than males, and up to 60% of young do not survive to maturity.Owen and Pemberton, p. 69. Milk replacements are often used for devils that have been bred in captivity, for orphaned devils or young who are born to diseased mothers. Little is known about the composition of the devil's milk compared to other marsupials.
Inside the pouch, the nourished young develop quickly. In the second week, the rhinarium becomes distinctive and heavily pigmented. At 15 days, the external parts of the ear are visible, although these are attached to the head and do not open out until the devil is around 10 weeks old. The ear begins blackening after around 40 days, when it is less than long, and by the time the ear becomes erect, it is between . Eyelids are apparent at 16 days, whiskers at 17 days, and the lips at 20 days. The devils can make squeaking noises after eight weeks, and after around 10–11 weeks, the lips can open. Despite the formation of eyelids, they do not open for three months, although eyelashes form at around 50 days. The young—up to this point they are pink—start to grow fur at 49 days and have a full coat by 90 days. The fur growing process starts at the snout and proceeds back through the body, although the tail attains fur before the rump, which is the last part of the body to become covered. Just before the start of the furring process, the colour of the bare devil's skin will darken and become black or dark grey in the tail.
The devils have a complete set of facial vibrissae and ulnar carpels, although it is devoid of vibrissae. During the third week, the and ulnarcarpals are the first to form. Subsequently, the , interramal, and submental vibrissae form. The last four typically occur between the 26th and 39th day. Their eyes open shortly after their fur coat develops—between 87 and 93 days—and their mouths can relax their hold of the nipple at 100 days. They leave the pouch 105 days after birth, appearing as small copies of the parent and weighing around . Zoologist Eric Guiler recorded its size at this time as follows: a crown-snout length of , tail length of , pes length , manus , shank , forearm and crown-rump length is . During this period, the devils lengthen at a roughly linear rate.
After being ejected, the devils stay outside the pouch, but they remain in the den for around another three months, first venturing outside the den between October and December before becoming independent in January. During this transitional phase out of the pouch, the young devils are relatively safe from predation as they are generally accompanied. When the mother is hunting they can stay inside a shelter or come along, often riding on their mother's back. During this time they continue to drink their mother's milk. Female devils are occupied with raising their young for all but approximately six weeks of the year.Guiler (1992), pp. 16–22. The milk contains a higher amount of iron than the milk of placental mammals. In Guiler's 1970 study, no females died while rearing their offspring in the pouch. After leaving the pouch, the devils grow by around a month until they are six months old. While most pups will survive to be weaned, Guiler reported that up to three fifths of devils do not reach maturity. As juveniles are more crepuscular than adults, their appearance in the open during summer gives the impression to humans of a population boom. A study into the success of translocated devils that were orphaned and raised in captivity found that young devils who had consistently engaged with new experiences while they were in captivity survived better than young who had not.
Habitat disruption can expose dens where mothers raise their young. This increases mortality, as the mother leaves the disturbed den with her pups clinging to her back, making them more vulnerable.Owen and Pemberton, pp. 75–76. Cancer in general is a common cause of death in devils.Owen and Pemberton, p. 171. In 2008, high levels of potentially carcinogenic flame retardant chemicals were found in Tasmanian devils. Preliminary results of tests ordered by the Tasmanian government on chemicals found in fat tissue from 16 devils have revealed high levels of hexabromobiphenyl (BB153) and "reasonably high" levels of decabromodiphenyl ether (BDE209). The Save the Tasmanian Devil Appeal is the official fundraising entity for the Save the Tasmanian Devil Program. The priority is to ensure the survival of the Tasmanian devil in the wild.
The species was listed as vulnerable under the Tasmanian Threatened Species Protection Act 1995 in 2005 and the Australian Environment Protection and Biodiversity Conservation Act 1999 in 2006, which means that it is at risk of extinction in the "medium term". The IUCN classified the Tasmanian devil in the lower risk/least concern category in 1996, but in 2009 they reclassified it as endangered. Appropriate wildlife refuges such as Savage River National Park in North West Tasmania provide hope for their survival.
After the death of the last thylacine in 1936,Paddle, p. 195. the Tasmanian devil was protected by law in June 1941 and the population slowly recovered. In the 1950s, with reports of increasing numbers, some permits to capture devils were granted after complaints of livestock damage. In 1966, poisoning permits were issued although attempts to have the animal unprotected failed.Owen and Pemberton, p. 99. During this time environmentalists also became more outspoken, particularly as scientific studies provided new data suggesting the threat of devils to livestock had been vastly exaggerated.Owen and Pemberton, pp. 101–109. Numbers may have peaked in the early 1970s after a population boom; in 1975 they were reported to be lower, possibly due to overpopulation and consequent lack of food.Owen and Pemberton, pp. 118–119. Another report of overpopulation and livestock damage was reported in 1987.Owen and Pemberton, pp. 120–121. The following year, Trichinella spiralis, a parasite which kills animals and can infect humans, was found in devils and minor panic broke out before scientists assured the public that 30% of devils had it but that they could not transmit it to other species.Owen and Pemberton, pp. 127–129. Control permits were ended in the 1990s, but illegal killing continues to a limited extent, albeit "locally intense". This is not considered a substantial problem for the survival of the devil. Approximately 10,000 devils were killed per year in the mid-1990s. A selective culling program has taken place to remove individuals affected with DFTD, and has been shown to not slow the rate of disease progression or reduced the number of animals dying. A model has been tested to find out whether culling devils infected with DFTD would assist in the survival of the species, and it has found that culling would not be a suitable strategy to employ.
The vast majority of deaths occurred in the sealed portion of the road, believed to be due to an increase in speeds. It was also conjectured that the animals were harder to see against the dark bitumen instead of the light gravel. The devil and quoll are especially vulnerable as they often try to retrieve roadkill for food and travel along the road. To alleviate the problem, traffic slowing measures, man-made pathways that offer alternative routes for devils, education campaigns, and the installation of light reflectors to indicate oncoming vehicles have been implemented. They are credited with decreases in roadkill. Devils have often been victims of roadkill when they are retrieving other roadkill. Work by scientist Menna Jones and a group of conservation volunteers to remove dead animals from the road resulted in a significant reduction in devil traffic deaths. It was estimated that 3,392 devils, or 3.8–5.7% of the population, were being killed annually by vehicles in 2001–2004. In 2009, the Save the Tasmanian Devil group launched the "Roadkill Project", which allowed members of the public to report sightings of devils which had been killed on the road. On 25 September 2015, 20 immunised devils were microchipped and released in Narawntapu National Park. By 5 October four had been hit by cars, prompting Samantha Fox, leader of Save the Tasmanian Devil, to describe roadkill as being the biggest threat to the Tasmanian devil after DFTD. A series of solar-powered alarms have been trialled that make noises and flash lights when cars are approaching, warning the animals. The trial ran for 18 months and the trial area had two-thirds less deaths than the control.
Wild Tasmanian devil populations are being monitored to track the spread of the disease and to identify changes in disease prevalence. Field monitoring involves trapping devils within a defined area to check for the presence of the disease and determine the number of affected animals. The same area is visited repeatedly to characterise the spread of the disease over time. So far, it has been established that the short-term effects of the disease in an area can be severe. Long-term monitoring at replicated sites will be essential to assess whether these effects remain, or whether populations can recover. Field workers are also testing the effectiveness of disease suppression by trapping and removing diseased devils. It is hoped that the removal of diseased devils from wild populations should decrease disease prevalence and allow more devils to survive beyond their juvenile years and breed. In March 2017, scientists at the University of Tasmania presented an apparent first report of having successfully treated Tasmanian devils with the disease. Live cancer cells that were treated with IFN-γ to restore MHC-I expression, were injected into the infected devils to stimulate their immune system to recognise and fight the disease. In 2020 it was reported that one of the last DFTD-free wild population of Tasmanian devils was suffering from inbreeding depression and has undergone a significant decline in reproductive success in recent years.
It is a common belief that devils will eat humans. While they are known to eat dead bodies, there are prevalent myths that they eat living humans who wander into the bush.Owen and Pemberton, p. 10. Despite outdated beliefs and exaggerations regarding their disposition, many, although not all, devils will remain still when in the presence of a human; some will also shake nervously. They can bite and scratch out of fear when held by a human, but a firm grip will cause them to remain still.Owen and Pemberton, pp. 15–18. Although they can be tamed, they are asocial, and are not considered appropriate as pets; they have an unpleasant odour, and neither demonstrate nor respond to affection.Owen and Pemberton, p. 113.
Until recently, the devil was not studied much by academics and naturalists. At the start of the 20th century, Hobart zoo operator Mary Roberts, who was not a trained scientist, was credited for changing people's attitudes and encouraging scientific interest in native animals (such as the devil) that were seen as fearsome and abhorrent, and the human perception of the animal changed. Theodore Thomson Flynn was the first professor of biology in Tasmania, and carried out some research during the period around World War I.Owen and Pemberton, pp. 93–97. In the mid-1960s, Professor Guiler assembled a team of researchers and started a decade of systematic fieldwork on the devil. This is seen as the start of modern scientific study of it.Owen and Pemberton, pp. 99–101. However, the devil was still negatively depicted, including in tourism material. The first doctorate awarded for research into the devil came in 1991.Owen and Pemberton, p. 4.
Tasmanian devils were displayed in various zoos around the world from the 1850s onwards.Owen and Pemberton, p. 132. In the 1950s several animals were given to European zoos.Owen and Pemberton, pp. 101–2. In October 2005 the Tasmanian government sent four devils, two male and two female, to the Copenhagen Zoo, following the birth of the first son of Frederik X and his Tasmanian-born wife Mary. Due to restrictions on their export by the Australian government, at the time these were the only devils known to be living outside Australia. In June 2013, due to the successes of the insurance population program, it was planned to send devils to other zoos around the world in a pilot program. San Diego Zoo Wildlife Alliance and Albuquerque Biopark were selected to participate in the program, and Wellington Zoo and Auckland Zoo soon followed. In the United States, four additional zoos have since been selected as part of the Australian government's Save the Tasmanian Devil program, the zoos selected were: the Fort Wayne Children's Zoo, the Los Angeles Zoo, the Saint Louis Zoo, and the Toledo Zoo. Captive devils are usually forced to stay awake during the day to cater to visitors, rather than following their natural nocturnal style.Owen and Pemberton, p. 133.
Tasmanian devils are popular with tourists, and the director of the Tasmanian Devil Conservation Park has described their possible extinction as "a really significant blow for Australian and Tasmanian tourism". There has also been a multimillion-dollar proposal to build a giant 19 m-high, 35 m-long devil in Launceston in northern Tasmania as a tourist attraction. Devils began to be used as ecotourism in the 1970s, when studies showed that the animals were often the only things known about Tasmania overseas, and suggested that they should therefore be the centrepiece of marketing efforts, resulting in some devils being taken on promotional tours.Owen and Pemberton, pp. 122–124.
The Tasmanian devil is probably best known internationally as the inspiration for the Looney Tunes cartoon character the Tasmanian Devil, or "Taz" in 1954. Little known at the time, the loud hyperactive cartoon character has little in common with the real life animal.Owen and Pemberton, p. 12. After a few shorts between 1957 and 1964, the character was retired until the 1990s, when he gained his own show, Taz-Mania, and again became popular.Owen and Pemberton, pp. 156–160. In 1997, a newspaper report noted that Warner Bros. had "trademarked the character and registered the name Tasmanian Devil", and that this trademark "was policed", including an eight-year legal case to allow a Tasmanian company to call a fishing lure "Tasmanian Devil". Debate followed, and a delegation from the Tasmanian government met with Warner Bros.Owen and Pemberton, pp. 161–164. Ray Groom, the Tourism Minister, later announced that a "verbal agreement" had been reached. An annual fee would be paid to Warner Bros. in return for the Government of Tasmania being able to use the image of Taz for "marketing purposes". This agreement later disappeared.Owen and Pemberton, pp. 167, 169. In 2006, Warner Bros. permitted the Government of Tasmania to sell stuffed toys of Taz with profits funnelled into research on DFTD.
Genetics
Description
Distribution and habitat
Ecology and behaviour
Feeding
Reproduction
Conservation status
Population declines
Culling
Road mortality
Devil facial tumour disease
Relationship with humans
In captivity
In popular culture
See also
Notes
Bibliography
Further reading
External links
|
|